Set out below are extracts from
Artificial Intelligence is Hard to See, a post by
Kate Crawford and Meredith Whittaker. AI refers to artificial intelligence and boldface text is taken from the article.
AI and decision-support systems are reaching into everyday life: determining who will be on a predictive policing ‘heat list’, who will be hired or promoted, which students will be recruited to universities, or seeking to predict at birth who will become a criminal by the age of 18. So the stakes are high.
[T]here are no agreed-upon methods to assess the human effects and longitudinal impacts of AI as it is applied across social systems. This knowledge gap is widening as the use of AI is proliferating, which heightens the risk of serious unintended consequences.
The core issue here isn’t that AI is worse than the existing human-led processes that serve to make predictions and assign rankings. Indeed, there’s much hope that AI can be used to provide more objective assessments than humans, reducing bias and leading to better outcomes. The key concern is that AI systems are being integrated into key social institutions, even though their accuracy, and their social and economic effects, have not been rigorously studied or validated.
AI systems are being integrated into key social institutions, even though their accuracy, and their social and economic effects, have not been rigorously studied or validated.
There needs to be a strong research field that measures and assesses the social and economic effects of current AI systems, in order to strengthen AI’s positive impacts and mitigate its risks. By measuring the impacts of these technologies, we can strengthen the design and development of AI, assist public and private actors in ensuring their systems are reliable and accountable, and reduce the possibility of errors. By building an empirical understanding of how AI functions on the ground, we can establish evidence-led models for responsible and ethical deployment, and ensure the healthy growth of the AI field.
If the social impacts of artificial intelligence are hard to see, it is critical to find rigorous ways to make them more visible and accountable. We need new tools to allow us to know how and when automated decisions are materially affecting our lives — and, if necessary, to contest them.